A detailed source model for theMw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records
نویسندگان
چکیده
The 11 March 2011 Mw9.0 Tohoku-Oki earthquake was recorded by an exceptionally large amount of diverse data offering a unique opportunity to investigate the details of this major megathrust rupture. Many studies have taken advantage of the very dense Japanese onland strong motion, broadband, and continuous GPS networks in this sense. But resolution tests and the variability in the proposed solutions have highlighted the difficulty to uniquely resolve the slip distribution from these networks, relatively distant from the source region, and with limited azimuthal coverage. In this context, we present a finite fault slip joint inversion including an extended amount of complementary data (teleseismic, strong motion, high-rate GPS, static GPS, seafloor geodesy, and tsunami records) in an attempt to reconcile them into a single better resolved model. The inversion reveals a patchy slip distribution with large slip (up to 64 m) mostly located updip of the hypocenter and near the trench. We observe that most slip is imaged in a region where almost no earthquake was recorded before the main shock and around which intense interplate seismicity is observed afterward. At a smaller scale, the largest slip pattern is imaged just updip of an important normal fault coseismically activated. This normal fault has been shown to be the mark of very low dynamic friction allowing extremely large slip to propagate up to the free surface. The spatial relationship between this normal fault and our slip distribution strengthens its key role in the rupture process of the Tohoku-Oki earthquake.
منابع مشابه
Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami
The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world’s history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, sei...
متن کاملClues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake
The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retriev...
متن کاملA window into the complexity of the dynamic rupture of the 2011 Mw 9 1 Tohoku - Oki earthquake
21 The 2011 Mw 9 Tohoku-Oki earthquake, the best recorded earthquake in the history 22 of seismology, provides unique opportunities to address fundamental issues in 23 earthquake source dynamics. Here we conduct a high resolution array analysis based 24 on recordings from the USarray and the European network. The mutually consistent 25 results from both arrays reveal unprecedentedly observed ru...
متن کاملAftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.
The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. Th...
متن کاملDifferent depths of near-trench slips of the 1896 Sanriku and 2011 Tohoku earthquakes
The 1896 Sanriku earthquake was a typical ‘tsunami earthquake’ which caused large tsunami despite its weak ground shaking. It occurred along the Japan Trench in the northern tsunami source area of the 2011 Tohoku earthquake where a delayed tsunami generation has been proposed. Hence the relation between the 1896 and 2011 tsunami sources is an important scientific as well as societal issue. The ...
متن کامل